3.93 \(\int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx\)

Optimal. Leaf size=138 \[ \frac {64 a^3 (7 A+5 B) \sin (c+d x)}{105 d \sqrt {a \cos (c+d x)+a}}+\frac {16 a^2 (7 A+5 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{105 d}+\frac {2 a (7 A+5 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{35 d}+\frac {2 B \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{7 d} \]

[Out]

2/35*a*(7*A+5*B)*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d+2/7*B*(a+a*cos(d*x+c))^(5/2)*sin(d*x+c)/d+64/105*a^3*(7*A
+5*B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+16/105*a^2*(7*A+5*B)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2751, 2647, 2646} \[ \frac {64 a^3 (7 A+5 B) \sin (c+d x)}{105 d \sqrt {a \cos (c+d x)+a}}+\frac {16 a^2 (7 A+5 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{105 d}+\frac {2 a (7 A+5 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{35 d}+\frac {2 B \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{7 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]),x]

[Out]

(64*a^3*(7*A + 5*B)*Sin[c + d*x])/(105*d*Sqrt[a + a*Cos[c + d*x]]) + (16*a^2*(7*A + 5*B)*Sqrt[a + a*Cos[c + d*
x]]*Sin[c + d*x])/(105*d) + (2*a*(7*A + 5*B)*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(35*d) + (2*B*(a + a*Cos
[c + d*x])^(5/2)*Sin[c + d*x])/(7*d)

Rule 2646

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(-2*b*Cos[c + d*x])/(d*Sqrt[a + b*Sin[c + d*
x]]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2647

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^(n -
1))/(d*n), x] + Dist[(a*(2*n - 1))/n, Int[(a + b*Sin[c + d*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && Eq
Q[a^2 - b^2, 0] && IGtQ[n - 1/2, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx &=\frac {2 B (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {1}{7} (7 A+5 B) \int (a+a \cos (c+d x))^{5/2} \, dx\\ &=\frac {2 a (7 A+5 B) (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 B (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {1}{35} (8 a (7 A+5 B)) \int (a+a \cos (c+d x))^{3/2} \, dx\\ &=\frac {16 a^2 (7 A+5 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{105 d}+\frac {2 a (7 A+5 B) (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 B (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {1}{105} \left (32 a^2 (7 A+5 B)\right ) \int \sqrt {a+a \cos (c+d x)} \, dx\\ &=\frac {64 a^3 (7 A+5 B) \sin (c+d x)}{105 d \sqrt {a+a \cos (c+d x)}}+\frac {16 a^2 (7 A+5 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{105 d}+\frac {2 a (7 A+5 B) (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 B (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.36, size = 83, normalized size = 0.60 \[ \frac {a^2 \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\cos (c+d x)+1)} ((392 A+505 B) \cos (c+d x)+6 (7 A+20 B) \cos (2 (c+d x))+1246 A+15 B \cos (3 (c+d x))+1040 B)}{210 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]),x]

[Out]

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*(1246*A + 1040*B + (392*A + 505*B)*Cos[c + d*x] + 6*(7*A + 20*B)*Cos[2*(c + d*
x)] + 15*B*Cos[3*(c + d*x)])*Tan[(c + d*x)/2])/(210*d)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 95, normalized size = 0.69 \[ \frac {2 \, {\left (15 \, B a^{2} \cos \left (d x + c\right )^{3} + 3 \, {\left (7 \, A + 20 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (98 \, A + 115 \, B\right )} a^{2} \cos \left (d x + c\right ) + {\left (301 \, A + 230 \, B\right )} a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

2/105*(15*B*a^2*cos(d*x + c)^3 + 3*(7*A + 20*B)*a^2*cos(d*x + c)^2 + (98*A + 115*B)*a^2*cos(d*x + c) + (301*A
+ 230*B)*a^2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/(d*cos(d*x + c) + d)

________________________________________________________________________________________

giac [A]  time = 1.39, size = 225, normalized size = 1.63 \[ \frac {1}{420} \, \sqrt {2} {\left (\frac {15 \, B a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )}{d} + \frac {21 \, {\left (2 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 5 \, B a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )}{d} + \frac {35 \, {\left (10 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 11 \, B a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )}{d} + \frac {105 \, {\left (8 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 7 \, B a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{d} + \frac {420 \, {\left (3 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 2 \, B a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{d}\right )} \sqrt {a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

1/420*sqrt(2)*(15*B*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(7/2*d*x + 7/2*c)/d + 21*(2*A*a^2*sgn(cos(1/2*d*x + 1/2*c
)) + 5*B*a^2*sgn(cos(1/2*d*x + 1/2*c)))*sin(5/2*d*x + 5/2*c)/d + 35*(10*A*a^2*sgn(cos(1/2*d*x + 1/2*c)) + 11*B
*a^2*sgn(cos(1/2*d*x + 1/2*c)))*sin(3/2*d*x + 3/2*c)/d + 105*(8*A*a^2*sgn(cos(1/2*d*x + 1/2*c)) + 7*B*a^2*sgn(
cos(1/2*d*x + 1/2*c)))*sin(1/2*d*x + 1/2*c)/d + 420*(3*A*a^2*sgn(cos(1/2*d*x + 1/2*c)) + 2*B*a^2*sgn(cos(1/2*d
*x + 1/2*c)))*sin(1/2*d*x + 1/2*c)/d)*sqrt(a)

________________________________________________________________________________________

maple [A]  time = 0.33, size = 104, normalized size = 0.75 \[ \frac {8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{3} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (-30 B \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (21 A +105 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-70 A -140 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+105 A +105 B \right ) \sqrt {2}}{105 \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x)

[Out]

8/105*cos(1/2*d*x+1/2*c)*a^3*sin(1/2*d*x+1/2*c)*(-30*B*sin(1/2*d*x+1/2*c)^6+(21*A+105*B)*sin(1/2*d*x+1/2*c)^4+
(-70*A-140*B)*sin(1/2*d*x+1/2*c)^2+105*A+105*B)*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [A]  time = 1.05, size = 139, normalized size = 1.01 \[ \frac {14 \, {\left (3 \, \sqrt {2} a^{2} \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 25 \, \sqrt {2} a^{2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 150 \, \sqrt {2} a^{2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} A \sqrt {a} + 5 \, {\left (3 \, \sqrt {2} a^{2} \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 21 \, \sqrt {2} a^{2} \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 77 \, \sqrt {2} a^{2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 315 \, \sqrt {2} a^{2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} B \sqrt {a}}{420 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

1/420*(14*(3*sqrt(2)*a^2*sin(5/2*d*x + 5/2*c) + 25*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 150*sqrt(2)*a^2*sin(1/2*
d*x + 1/2*c))*A*sqrt(a) + 5*(3*sqrt(2)*a^2*sin(7/2*d*x + 7/2*c) + 21*sqrt(2)*a^2*sin(5/2*d*x + 5/2*c) + 77*sqr
t(2)*a^2*sin(3/2*d*x + 3/2*c) + 315*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c))*B*sqrt(a))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(5/2),x)

[Out]

int((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________